New Simple, Easy-to-Understand Derivation of Laser Spectral Linewidth

New ground-breaking research from the University of Surrey could change the way scientists understand and describe lasers - establishing a new relationship between classical and quantum physics.

In a comprehensive study published by the journal Progress in Quantum Electronics, a researcher from Surrey, in partnership with a colleague from Karlsruhe Institute of Technology and Fraunhofer IOSB in Germany, calls into question 60 years of orthodoxy surrounding the principles of lasers and the laser spectral linewidth - the foundation for controlling and measuring wavelengths of light.

In the new study, the researchers find that a fundamental principle of lasers, that the amplification of light compensates for the losses of the laser, is only an approximation. The team quantify and explain that a tiny excess loss, which is not balanced by the amplified light but by normal luminescence inside the laser, provides the answer to the spectral linewidth of the laser.

One of these loss mechanisms, the outcoupling of light from the laser, produces the laser beam used in vehicle manufacturing, telecommunications, laser surgery, GPS and so much more.

Markus Pollnau, Professor in Photonics at the University of Surrey, said: "Since the laser was invented in 1960, the laser spectral linewidth has been treated as the stepchild in the descriptions of lasers in textbooks and university teaching worldwide, because its quantum-physical explanation has placed extraordinary challenges even for the lecturers.

"As we have explained in this study, there is a simple, easy-to-understand derivation of the laser spectral linewidth, and the underlying classical physics proves the quantum-physics attempt of explaining the laser spectral linewidth hopelessly incorrect. This result has fundamental consequences for quantum physics."

Source: https://www.surrey.ac.uk/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.