Although the star-covered night sky is regarded by many as a synonym of serenity, the cosmos is in fact a rather hostile place. It hosts many extreme environments that would instantaneously eradicate any life nearby. A new space mission is about to reveal this violent nature in greater detail than ever before: On Feb. 17, the Japan Aerospace Exploration Agency (JAXA) launched its ASTRO-H satellite – a very precise and sensitive eye for X-rays emerging from hot and energetic processes in space. After its successful lift-off, the spacecraft was renamed “Hitomi,” which means “pupil of the eye” in Japanese.
Astronomers have discovered a spectacular tail of gas more than 300,000 light years across coming from a nearby galaxy.
Nanoco Group plc, a world leader in the development and manufacture of cadmium-free quantum dots and other nanomaterials, today announced it was selected as the winner of the Prism Awards 2016 in the Materials and Coatings category for its cadmium-free CFQD® quantum dots. The award was presented at a ceremony held in San Francisco during the SPIE Photonics West Conference, February 13-18.
New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there’s a catch – the tracks the particles follow do not always behave as one would expect from “realistic” trajectories, but often in a fashion that has been termed “surrealistic”.
If topological insulators are doped with impurities that possess magnetic properties, they lose their conductivity. Yet contrary to what has been assumed thus far, it is not the magnetism that leads to this. This has been shown by recent experiments with BESSY II at HZB. The results are now published in Nature Communications. Understanding these effects is crucial for applications of topological insulators in information technology.
While a classical bit found in conventional electronics exists only in binary one or zero states, the more resourceful quantum bit, or ‘qubit,’ is represented by a vector, pointing to a simultaneous combination of the one and zero states. To fully implement a qubit, it is necessary to control the direction of this qubit’s vector, which is generally done using fine-tuned and noise-isolated procedures.
Researchers have demonstrated how the behavior of unusually-shaped black holes could disprove Einstein’s general theory of relativity, the cornerstone of modern physics. However, such an object could only be present in a universe with at least five dimensions.
By Jake Wilkinson
19 Feb 2016
Scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley will play a role in an upcoming space telescope project, formally set in motion this week by NASA, that will explore the mysteries of the expanding universe and observe alien worlds circling distant suns, among other science aims.
The sources of the high-energy cosmic neutrinos that are detected by the IceCube Neutrino Observatory buried in the Antarctic ice may be hidden from observations of high-energy gamma rays, new research reveals.
Astronomers using NASA's Hubble Space Telescope have measured the rotation rate of an extreme exoplanet by observing the varied brightness in its atmosphere. This is the first measurement of the rotation of a massive exoplanet using direct imaging.
Para una versión en español, haga clic aquí. Para a versão em português, clique aqui.
Analyzing the data collected by the Fermi Gamma-ray Space Telescope Maxim Pshirkov (The Sternberg Astronomical Institute, MSU) discovered a new source that confirmed the fact that binary systems with strong colliding stellar winds comprise a separate new population of high-energy gamma-ray sources.
Mikhail Lemeshko and Richard Schmidt introduce technique to calculate and understand "angulon problem" • paper published in Physical Review X
Astronomers have used NASA's Chandra X-ray Observatory to discover a jet from a very distant supermassive black hole being illuminated by the oldest light in the Universe. This discovery shows that black holes with powerful jets may be more common than previously thought in the first few billion years after the Big Bang.
For the first time astronomers were able to analyse the atmosphere of an exoplanet in the class known as super-Earths. Using data gathered with the NASA/ESA Hubble Space Telescope and new analysis techniques, the exoplanet 55 Cancri e is revealed to have a dry atmosphere without any indications of water vapour. The results, to be published in the Astrophysical Journal, indicate that the atmosphere consists mainly of hydrogen and helium.