Two astronomy students from Leiden University have mapped the entire Milky Way galaxy in dwarf stars for the first time. They show that there are a total of 58 billion dwarf stars, of which seven per cent reside in the outer regions of our Galaxy. This result is the most comprehensive model ever for the distribution of these stars. The findings appear in a new paper in Monthly Notices of the Royal Astronomical Society.
Scientists of the H.E.S.S. Observatory have identified an area around the black hole in the centre of the Milky Way that emits intense gamma radiation of extremely high energy. The source of the radiation is an astrophysical accelerator speeding up protons to energies of up to one peta electronvolts (PeV) – more than 100 times higher than the largest and most powerful man-made particle accelerator, the Large Hadron Collider LHC at CERN.
When researchers with the BICEP2 experiment announced they had seen the first strong evidence for cosmic inflation, it was front-page news around the world. Inflation is the extremely rapid expansion of space-time during its first split second of existence, proposed to explain a number of puzzling properties of the universe, making the BICEP2 results a really big deal.
Nearly four billion years ago, life arose on Earth. Life appeared because our planet had a rocky surface, liquid water, and a blanketing atmosphere. But life thrived thanks to another necessary ingredient: the presence of a protective magnetic field. A new study of the young, Sun-like star Kappa Ceti shows that a magnetic field plays a key role in making a planet conducive to life.
Scientists at Florida State University’s National High Magnetic Field Laboratory (MagLab) have demonstrated a way to improve the performance of the powerful but persnickety building blocks of quantum computers, called quantum bits, or qubits, by reducing interference from the environment.
A group of scientists from Moscow Institute of Physics and Technology and from the Moscow State University has developed a fundamentally new type of memory cell based on superconductors - this type of memory will be able to work hundreds of times faster than the types of memory devices commonly used today, according to an article published in the journal Applied Physics Letters.
A scientific group from Tomsk Polytechnic University entered the RD51 collaboration of the European Centre for Nuclear Research (CERN) in Geneva last week. The RD51 collaboration is an “entry point” to exchange knowledge on a global scale. It is engaged in the technological development of microstructure for gas detectors, software and electronics development necessary for their operation, and contributes to the expansion of detector use in the industry.
Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Department of Astrophysical Sciences at Princeton University indicate that turbulent swirls of plasma could benefit one of the two major branches of such research.
Post-doctoral researchers, Karim Essafi, Owen Benton and Ludovic Jaubert in the Theory of Quantum Matter Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) are on a quest to find out as much as they can about unusual states of matter called spin liquids and if these spin liquids could generate advances in the field of physics. The results could lead to the development of quantum computing, which require an exploration of new materials to become a reality.
By Rebecca Hofland
16 Mar 2016
Better thermometers might be possible as a result of a discovery at the National Institute of Standards and Technology (NIST), where physicists have found a way to calibrate temperature measurements by monitoring the tiny motions of a nanomechanical system that are governed by the often counterintuitive rules of quantum mechanics.
The challenge of high temperature superconductivity in the cuprates triggers innovative scientific investigations. A key question remains the complexity of the phase diagram. As temperature and doping change, these materials switch between superconducting, metallic, and insulating phases, as well as other more exotic phases, such as the elusive pseudogap.
The two major pillars of modern physics are relativity theory and quantum mechanics, and several new phenomena have been discovered with their combination. For example, a major outcome of the quantum field theory is the Unruh effect, which acts as a critical tool to study a number of phenomena, including particles that are thermally emitted from cosmological horizons and black holes.
John Zasadzinski, a professor of physics at Illinois Institute of Technology (IIT), will present “Superconductivity in accelerator and particle physics” at 4 p.m. Tuesday, March 22, in Moulton Hall, room 214. The talk is part of the Spring 2016 Physics Colloquium.
Using some of the largest supercomputers available, physics researchers from the University of Illinois at Urbana-Champaign have produced one of the largest simulations ever to help explain one of physics most daunting problems.
Dark matter is all around us. Though no one has ever seen it, and no one knows what it really is, indisputable physical calculations state that approximately 27% of the universe is dark matter. Only five % is the matter of which all known materials consist; from the smallest ant to the largest galaxy.