Saint Jean Carbon Inc. (“Saint Jean” or the “Company”), a carbon science company engaged in the development of natural graphite properties and related carbon products, is pleased to announce that the Company, along with their industry partners, will complete a prototype of the recently developed design for a diamagnetic wire that will conduct energy at room temperature with superconducting level resistance.
A team of astronomers from Armagh Observatory and the University of Buckingham report that the discovery of hundreds of giant comets in the outer planetary system over the last two decades means that these objects pose a much greater hazard to life than asteroids. The team, made up of Professors Bill Napier and Duncan Steel of the University of Buckingham, Professor Mark Bailey of Armagh Observatory, and Dr David Asher, also at Armagh, publish their review of recent research in the December issue of Astronomy and Geophysics, the journal of the Royal Astronomical Society.
Physicists Luis Delgado-Aparicio and Egemen Kolemen of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won a national scientific competition to conduct a full day of experiments on the DIII-D National Fusion Facility that General Atomics operates in San Diego for the DOE. The honor, known as the Torkil Jensen Award, is named after the late and internationally recognized scientist who was a member of the General Atomics Fusion Group for 44 years.
Researchers at the University of Gothenburg Physics Department have finally found the secret to synchronize an unlimited number of spintronic oscillators. Such devices are very promising for future applications requiring wideband functionality.
An extraordinary ribbon of hot gas trailing behind a galaxy like a tail has been discovered using data from NASA's Chandra X-ray Observatory. This ribbon, or X-ray tail, is likely due to gas stripped from the galaxy as it moves through a vast cloud of hot intergalactic gas. With a length of at least 250,000 light years, it is likely the largest of such a tail ever detected.
Scientists from the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have reason to celebrate the first plasma of the Wendelstein 7-X (W7-X) stellarator at the Max Planck Institute in Greifswald, Germany earlier this month. The Laboratory has designed and contributed major components to the device and is collaborating on research. Three PPPL physicists attended the December 10 event.
The newly upgraded accelerator at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has delivered full-energy electrons as part of commissioning activities for the ongoing 12 GeV Upgrade project. At 4:20 p.m. on Monday, Dec. 14, operators of the Continuous Electron Beam Accelerator Facility (CEBAF) delivered the first batch of 12 GeV electrons (12.065 GeV) to its newest experimental hall complex, Hall D.
A system of antennas similar to those that astrophysicists use to study radio emissions from stars and galaxies will help shed light on fusion experiments at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Called Synthetic Aperture Microwave Imaging (SAMI), the system aims to provide highly precise time and spatial resolution measurements of the density of current at the edge of fusion plasmas in the National Spherical Torus Experiment-Upgrade (NSTX-U) -- the Laboratory's newly upgraded flagship facility that is set to embark on compelling new research programs.
Electrons have two degrees of freedom, or attributes: charge and spin. With the development of microfabrication technology in recent years, through the active combination of these two attributes, it has become possible to create devices that are head and shoulders above electronics of the past.
A research group at Osaka University has succeeded in observing at the intended timing two-phonon quantum interference by using two cold calcium ions in ion traps, which spatially confine charged particles. A phonon is a unit of vibrational energy that arises from oscillating particles within crystals. Two-particle quantum interference experiments using two photons or atoms have been previously reported, but this group’s achievement is the world’s first observation using two phonons.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.