Researchers have developed a new conceptual framework for understanding how stars similar to our Sun evolve. Their framework helps explain how the rotation of stars, their emission of x-rays, and the intensity of their stellar winds vary with time. According to first author Eric Blackman, professor of physics and astronomy at the University of Rochester, the work could also “ultimately help to determine the age of stars more precisely than is currently possible.”
An international team of researchers has made a breakthrough in generating single photons – the single quanta of light particles – as carriers of quantum information in security systems. The findings are set to revolutionise cybersecurity, along with advancing quantum computing, which can search large databases exponentially faster. Work will be continued through the Australian Institute for Nanoscale Science and Technology, which launches at the University of Sydney in April 2016.
In December, the ATLAS and CMS experiments presented a sneak peek of the new data collected during the first few months of the Large Hadron Collider’s enormously energetic second run. Both experiments reported a small excess of photon pairs with a combined mass around 750 GeV. This small excess could be the first hint of a new massive particle that spits out two photons as it decays, or it might be a coincidental fluctuation that will disappear with more information.
In quantum theory, interactions among particles create fascinating correlations known as entanglement that cannot be explained by any means known to the classical world. Entanglement is a consequence of the probabilistic rules of quantum mechanics and seems to permit a peculiar instantaneous connection between particles over long distances that defies the laws of our macroscopic world - a phenomenon that Einstein referred to as "spooky action at a distance."
Observations using the VLA radio telescope array in New Mexico show the innermost portion of a planetary birthplace around the young star HL Tauri in unprecedented detail. Clearly visible is a lump of dust with 3 to 8 times the mass of the Earth, which represents the ideal conditions for the formation of a planet: a planetary nursery with sufficient building material for a planet somewhere between the mass of our own Earth and that of Neptune. The presence of a lump points towards a solution for a fundamental problem of planet formation: how planets can form on the limited time scale available for such processes.
The double-slit experiment is regarded among physicists as one of the most elegant experiments of all time. According to Nobel Prize laureate Richard Feynman, it encapsulates the entire mystery of quantum physics. It impressively demonstrates the wave nature of light and the phenomenon of interference.
The lightest few elements in the periodic table formed minutes after the Big Bang. Heavier chemical elements are created by stars, either from nuclear fusion in their interiors or in catastrophic explosions. However, scientists have disagreed for nearly 60 years about how the heaviest elements, such as gold and lead, are manufactured. New observations of a tiny galaxy discovered last year show that these heavy elements are likely left over from rare collisions between two neutron stars. The work is published by Nature.
NASA's planet hunter, the Kepler space telescope, has captured the brilliant flash of an exploding star's shock wave--what astronomers call the "shock breakout" of a supernova--for the first time in visible light wavelengths.
The fastest winds ever seen at ultraviolet wavelengths have been discovered near a supermassive black hole by a research team that includes a Penn State University astronomer. "This new ultrafast wind surprised us when it appeared at ultraviolet wavelengths, indicating it is racing away from the ravenous black hole at unprecedented speeds -- almost like a bat out of Hell," said William Nielsen (Niel) Brandt, the Verne M. Willaman Professor of Astronomy and Astrophysics and a professor of physics at Penn State, a member of the research team.
A team of international researchers including members of the Erlangen Centre for Astroparticle Physics (ECAP) at FAU has revealed a source of galactic cosmic radiation with petaelectronvolt energies for the first time: the supermassive black hole at the centre of the Milky Way. Their findings are based on a detailed analysis of the latest data from the telescopes in the High Energy Stereoscopic System (H.E.S.S.) in Namibia. Researchers have been mapping the centre of our galaxy in very-high-energy gamma rays using these telescopes – the most sensitive of their kind – for over 10 years. The results were published in the journal Nature on 16 March 2016.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.