Department of Mathematics, University of York
The quantum gravity group carries out research on various aspects of quantum gravity as well as on some allied areas of mathematical physics, including certain topics in quantum mechanics and also in classical general relativity. A particular interest of the research group is the subject of quantum field theory in curved spacetime. Our work often makes use of rigorous techniques drawn from functional analysis (e.g. the theory of operators on Hilbert spaces) or other areas of pure mathematics.
While a satisfactory theory of full quantum gravity continues to elude us, the attempt to anticipate some of the properties of such a theory has led to many interesting developments. Especially, Hawking's 1974 prediction of black hole evaporation, which was based on consideration of quantum field theory in curved spacetime, suggests that there must be yet-to-be-discovered deep interconnections between quantum theory, gravity and thermodynamics. More generally, the very existence of the problem of quantum gravity has changed our perspective on each of the separate theories of classical general relativity and quantum field theory and focussed attention on issues (e.g. the problem of singularities in classical general relativity or the problem of locality in quantum field theory) which might be expected to be of relevance for the unification problem. Further, both at the theoretical and experimental/observational level, the two subject areas have now essentially merged, with very-high-energy phenomena believed to have dominated the era just after the big bang and hence to have determined the present structure of the universe.
Primary Activity
Material Distributor
University Laboratory