Most people think of galaxies as huge islands of stars, gas and dust that populate the universe in visual splendor. Theory, however, has predicted there are other types of galaxies that are devoid of stars and made predominately of dense gas. These "dark" galaxies would be unseen against the black backdrop of the universe.
Whenever I see angry mobs reacting to the destruction of religious books it makes me think of Schrödinger, iPads and how we should interpret fundamentalist religious teachings in the digital era.
Research and Markets has announced the addition of Woodhead Publishing Ltd's new book "Quantum optics with semiconductor nanostructures" to their offering.
Supernovae are the brilliant, explosive deaths of stars. For a short time, these explosions can outshine an entire galaxy containing billions of stars.
Physicists describe how they have synthesized a new material that belongs to the iron-selenide class of superconductors, called LixFe2Se2(NH3)y, in a paper about to be published in EPJ B. The work was carried out by Ernst-Wilhelm Scheidt from the University of Augsburg and colleagues. This material displays promising superconducting transition temperatures of 44 Kelvins (K) at ambient pressure, thus improving upon traditional copper-based high-temperature superconductors.
Hydrogen production by solar water splitting in photoelectrochemical cells (PEC) has long been considered the holy grail of sustainable energy research. Iron oxide is a promising electrode material. An international team of researchers led by Empa, the Swiss Federal Laboratories for Materials Science and Technology, have now gained in-depth insights into the electronic structure of an iron oxide electrode – while it was in operation. This opens up new possibilities for an affordable hydrogen production from solar energy.
Recently, businessman Mike Lazaridis encouraged those present at the opening ceremony of the Mike & Ophelia Lazaridis Quantum-Nano Centre (QNC) to boldly go where no one has gone before.
The super-massive black hole at the center of the Milky Way Galaxy has a healthy appetite, frequently snacking on asteroids and comets. Now, a cloud of gas and dust called G2 is on a dangerous course to become its next meal.
Research shows newly developed solar powered cells may soon outperform conventional photovoltaic technology.
Physicists have proposed an experiment that could force us to make a choice between extremes to describe the behaviour of the Universe.
In the relatively new scientific frontier of topological insulators, theoretical and experimental physicists have been studying the surfaces of these unique materials for insights into the behavior of electrons that display some very un-electron-like properties.
Hubble Space Telescope have obtained a remarkable new view of a whopper of an elliptical galaxy, with a core bigger than any seen before. There are two intriguing explanations for the puffed up core, both related to the action of one or more black holes, and the researchers have not yet been able to determine which is correct.
Three Cornell research teams have received National Science Foundation (NSF) support from a new program that rewards high-risk, high-reward interdisciplinary projects.
One of the lowest mass supermassive black holes ever observed in the middle of a galaxy has been identified, thanks to NASA's Chandra X-ray Observatory and several other observatories. The host galaxy is of a type not expected to harbor supermassive black holes, suggesting that this black hole, while related to its supermassive cousins, may have a different origin.
University of California, Davis, researchers for the first time have looked inside gallium manganese arsenide, a type of material known as a "dilute magnetic semiconductor" that could open up an entirely new class of faster, smaller devices based on an emerging field known as "spintronics."
News Categories