Posted in | News | Quantum Physics

Researchers Develop Numerical "Tweezers" that Could Pin Nucleus in Place

Researchers from North Carolina State University and the Ruhr-Universität Bochum have developed numerical “tweezers” that can pin a nucleus in place, enabling them to study how interactions between protons and neutrons produce forces between nuclei.

They found that the strength of local interactions determines whether or not these nuclei attract or repel each other, shedding light on the parameters that control attraction or repulsion in quantum bound states.

Numerical tweezers used to measure the effective potential between two quantum states. (Credit: NC State University)

“Ultimately we want to understand how nuclear forces determine nuclear structure by studying how nuclei attract or repel one another,” says Dean Lee, professor of physics at NC State and corresponding author of a paper describing the work. “So we needed a way to hold particles in place and move them around relative to one another in order to measure attraction or repulsion.”

Lee, along with Ruhr-Universität Bochum colleagues Evgeny Epelbaum and Hermann Krebs and graduate student Alexander Rokash, utilized a numerical lattice with attractive potentials in order to isolate the particles they wanted to study. The attractive potentials created a way for a particle to get “stuck” in one place – like a hole in the ground that a marble could roll into. These were the numerical tweezers.

The team began simulations with two single particles held in different positions, then with particle pairs. They looked at two types of interactions between the groups of particles: local interactions, where the particles’ positions relative to one another don’t change; and non-local interactions, where the positions do change.

“We found that the local interactions had a much bigger effect on determining whether nuclei would stick together, or become bound,” Lee says. “Specifically, the strength and range of the local interactions determined whether or not the nuclei would bind to each other. In non-local interactions, on the other hand, the nuclei sometimes repelled each other.

“We’re interested in finding out why nuclei bind together to form new elements,” Lee continues. “Numerical tweezers allow us to do simple simulations using just a few particles, giving us insight into the most basic particle interactions and the ways in which nuclear interactions inform nuclear structure.”

The findings appear in Physical Review Letters. Rokash is first author of the paper. Funding was provided in part by the U.S. Department of Energy (DE-FG02-03ER41260). The computer simulations were conducted at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara.

Source: https://www.ncsu.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.