Posted in | News | Quantum Optics

Scientists Use Silver Atoms to Understand the Characteristics of New Superconductor

By doping a bismuth-based layered material with silver, Chinese scientists demonstrated that superconductivity is intrinsic to the new material rather than stemming from its impurities

The first report on the chemical substitution, or doping, using silver atoms, for a new class of superconductor that was only discovered this year, is about to be published in EPJ B. Chinese scientists from Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, discovered that the superconductivity is intrinsic rather than created by impurities in this material with a sandwich-style layered structure made of bismuth oxysulphide (Bi4O4S3).

Superconductors with a transition temperature (TC) above the boiling temperature of liquid nitrogen (77 kelvins or −196 °C) are called high TC superconductors. In the quest for such materials, compounds with bismuth disulphide (BiS2) layers have recently started to attract a lot of attention. Indeed, in July 2012, Japanese scientists reported achieving a TC at around 4.5 kelvins (-268.65 °C) with the first bismuth oxysulphide superconductor.

All the superconducting samples for this new superconductor reported so far are a mixture of Bi4O4S3 and impurities. However, the pure sample without impurities is not superconducting. Scientists have therefore been wondering whether the observed superconductivity stems from the presence of impurities.

The Hefei team performed systematic measurement of the material’s characteristics relying on x-ray diffraction, magnetic susceptibility, electrical transport and thermal transport. Using comparison of the x-ray diffraction patterns, they found that silver atoms partially replace the bismuth sites in the bismuth oxysulphide lattice.

Further experiments involved controlling the composition of the material through various levels of silver doping. The superconductivity, the authors found, was suppressed as the silver content increases and eventually disappears above a certain doping threshold. They believe that it is the modification of electronic structure upon doping that suppresses the superconductivity.

Based on these observations, they concluded that the observed superconductivity originates from the bismuth oxysulphide lattice rather than any impurities.

Source: http://www.springer.com

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.