Posted in | News | Quantum Physics

New Technology Could Make Colder Objects in Deep Space More Visible

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern University team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space.

"High performance infrared cameras are crucial for space exploration missions," said Manijeh Razeghi, the Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern University's McCormick School of Engineering and Applied Science. "By studying the infrared waves emitted by cool stars and planets, scientists are beginning to unlock the mysteries of these cooler objects."

Researchers have long looked to infrared waves to probe the depths of space. Infrared has a longer wavelength than visible light, so it can penetrate dense regions of gas and dust with less scattering and absorption. Current infrared detectors are typically built with mercury cadmium telluride, which works well with mid- and long-infrared wavelengths. However, this well-established technology demonstrates low uniformity and instability for infrared waves with very long wavelengths.

Published in the June 23 issue of Applied Physics Letters, Razeghi and her collaborators describe a new technology, which uses a novel type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb). The technology shows a stable optical response in regards to very long wavelength infrared light.

By engineering the quantum properties of the type II superlattice material, the team demonstrated the world's first InAs/InAsSb very long wavelength infrared photodiodes with high performance. The new detector can be used as an inexpensive and robust alternative to current infrared technologies.

"This material has emerged as the platform for the new generation of infrared detection and imaging," said Razeghi who leads McCormick's Center for Quantum Devices. "It has proved to have longer carrier lifetimes and promises a better controllability in epitaxial growth and simpler manufacturability."

Razeghi presented this work in a keynote talk at the International Society for Optical and Photonics Defense, Security, and Sensing conference in Baltimore in April and at the Microelectronics Workshop in Istanbul, Turkey last month.

Source: http://www.northwestern.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.