Posted in | News | Quantum Physics

NIST Optical Tools Produce Ultra-Low-Noise Microwave Signals

By combining advanced laser technologies in a new way, physicists at the National Institute of Standards and Technology (NIST) have generated microwave signals that are more pure and stable than those from conventional electronic sources. The apparatus could improve signal stability and resolution in radar, communications and navigation systems, and certain types of atomic clocks.

"This is the quietest, most stable microwave generator that's ever been made at room temperature," said project leader Scott Diddams.

Described in Nature Photonics,* NIST's low-noise apparatus is a new application of optical frequency combs, tools based on ultrafast lasers for precisely measuring optical frequencies, or colors, of light. Frequency combs are best known as the "gears" for experimental next-generation atomic clocks, where they convert optical signals to lower microwave frequencies, which can be counted electronically.

Matt Kirchner, a University of Colorado graduate student, fine-tunes an ultra-stable microwave generator that he helps operate at NIST.

The new low-noise system is so good that NIST scientists actually had to make two copies of the apparatus just to have a separate tool precise enough to measure the system's performance. Each system is based on a continuous-wave laser with its frequency locked to the extremely stable length of an optical cavity with a high "quality factor," assuring a steady and persistent signal. This laser, which emitted yellow light in the demonstration but could be another color, is connected to a frequency comb that transfers the high level of stability to microwaves. The transfer process greatly reduces—to one-thousandth of the previous level—random fluctuations in the peaks and valleys, or phase, of the electromagnetic waves over time scales of a second or less. This results in a stronger, purer signal at the exact desired frequency.

The base microwave signal is 1 gigahertz (GHz, or 1 billion cycles per second), which is the repetition rate of the ultrafast laser pulses that generate the frequency comb. The signal can also be a harmonic, or multiple, of that frequency. The laser illuminates a photodiode that produces a signal at 1 GHz or any multiple up to about 15 GHz. For example, many common radar systems use signals near 10 GHz.

NIST's low-noise oscillator might be useful in radar systems for detecting faint or slow-moving objects. The system might also be used to make atomic clocks operating at microwave frequencies, such as the current international standard cesium atom clocks, more stable. Other applications could include high-resolution analog-to-digital conversion of very fast signals, such as for communications or navigation, and radio astronomy that couples signals from space with arrival times at multiple antennas.

* T.M. Fortier, M.S. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C.W. Oates and S.A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nature Photonics. Published online June 26, 2011.

Source: The National Institute of Standards and Technology (NIST)

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.