Editorial Feature

Absolute Zero Can't Stop Quantum Physics

This article was updated on the 3rd September 2019.

JurikPeter / Shutterstock.com

One of the great unsolved mysteries in science is the odd behavior exhibited by quantum critical points at absolute zero. A phase transition – a liquid getting cold and freezing, or a metal heating up and losing its magnetic properties – is usually accompanied by a change in temperature. Quantum physicists are, however, puzzled by phase transitions occurring at absolute zero, where temperature change does not occur.

Absolute zero is -273°C; one might presume that nothing much happens at such a cold temperature. Perhaps not on a visible scale, but certainly on a quantum scale. A quantum critical point is the position in the phase diagram of a material where a continuous phase transition takes place at absolute zero. Such a point is usually achieved by a continuous suppression of a non-zero temperature phase transition to zero temperature by pressure, field or doping.

Researchers at the Institute of Solid State Physics at TU Wien (Vienna University of Technology) have been working towards a better understanding of such phenomena and hope to better describe quantum critical materials and the high-temperature superconductivity suspected to be closely related to quantum critical points.

Thermal fluctuations are usually responsible for phase transitions. Individual particles start to shake or rotate, for instance, completely at random. The higher the temperature, the more pronounced these fluctuations become, which can lead to a phase transition – causing a solid to melt, for example.

Dr Thomas Schäfer

As the temperature is reduced, the particles move around less until they reach absolute zero, at which point they should stop moving – or so the scientists thought. They presumed that the fluctuations would be zero at absolute zero, but it is not that simple, says Professor Allessandro Toschi.

Quantum physics states that it is impossible for a particle to be fully at rest in a specific location. Heisenberg's uncertainty principle tells us that position and momentum cannot be ascertained with total precision. Therefore, a particle’s position and momentum can still change at absolute zero, even if classic thermal fluctuations are no longer present. These changes are known as quantum fluctuations.

Professor Allessandro Toschi

This means that when it is too cold for classic vibrations and rotations, quantum physics guarantees that physically interesting things are still taking place: this is why phase transitions at absolute zero are so captivating.

What is crucial for the particles' behavior is how their momentum relates to energy,” explains Schäfer.

For a ball thrown through the air, the correlation is simple: the greater the momentum, the greater the kinetic energy, he continues. The energy increases as the square of momentum. But for particles in a solid, this relationship is much complicated and can look different, depending on the direction in which the particle is moving. Therefore, this connection is modeled using ‘Fermi surfaces’, which can take on complex three-dimensional shapes.

Until now, it was thought the shape of these Fermi surfaces was not significant in terms of quantum phase transitions. We have been able to show that is not the case. Only if you take the shape into account can you accurately calculate certain physical effects – for example, the way in which a material’s magnetic properties will change as it approaches absolute zero.

Professor Karsten Held

The researchers, who published their results in Physical Review Letters, hope to use this new tool to better describe quantum critical materials and maybe shed light on some of the great mysteries material science has been striving to solve over the years.

References:

  1. T. Schäfer, A. A. Katanin, K. Held, A. Toschi. Interplay of Correlations and Kohn Anomalies in Three Dimensions: Quantum Criticality with a Twist. Physical Review Letters, 2017; 119 (4) DOI: 10.1103/PhysRevLett.119.046402

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Kerry Taylor-Smith

Written by

Kerry Taylor-Smith

Kerry has been a freelance writer, editor, and proofreader since 2016, specializing in science and health-related subjects. She has a degree in Natural Sciences at the University of Bath and is based in the UK.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Taylor-Smith, Kerry. (2019, September 03). Absolute Zero Can't Stop Quantum Physics. AZoQuantum. Retrieved on April 18, 2024 from https://www.azoquantum.com/Article.aspx?ArticleID=57.

  • MLA

    Taylor-Smith, Kerry. "Absolute Zero Can't Stop Quantum Physics". AZoQuantum. 18 April 2024. <https://www.azoquantum.com/Article.aspx?ArticleID=57>.

  • Chicago

    Taylor-Smith, Kerry. "Absolute Zero Can't Stop Quantum Physics". AZoQuantum. https://www.azoquantum.com/Article.aspx?ArticleID=57. (accessed April 18, 2024).

  • Harvard

    Taylor-Smith, Kerry. 2019. Absolute Zero Can't Stop Quantum Physics. AZoQuantum, viewed 18 April 2024, https://www.azoquantum.com/Article.aspx?ArticleID=57.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.