Microwaves Freeze Single Atoms to Advance Quantum Technology Devices

Physicists at the University of Sussex have found a way of using everyday technology found in kitchen microwaves and mobile telephones to bring quantum physics closer to helping solve enormous scientific problems that the most powerful of today's supercomputers cannot even begin to embark upon.

Winfried Hensinger (right) and Dr. Seb Weidt are freezing individual atoms using microwaves. Credit:University of Sussex

A team led by Professor Winfried Hensinger has frozen single charged atoms to within a millionth of a degree of absolute zero (minus 273.15°C) with the help of microwave radiation. This technique will simplify the construction of 'quantum technology devices' including powerful quantum sensors, ultra-fast quantum computers, and ultra-stable quantum clocks. Quantum technologies make use of highly strange and counterintuitive phenomena predicted by the theory of quantum physics.

The report "Ground-state cooling of a trapped ion using long-wavelength radiation" was published in Physical Review Letters this week: Here

"The use of long-wavelength radiation instead of laser technology to cool ions can tremendously simplify the construction of practical quantum technology devices enabling us to build real devices much faster," said Professor Hensinger.

Once quantum technology is harnessed into practical devices it has the potential to completely change everyday life again - just as computers have already done. Quantum technologies may one day revolutionise our understanding of science answering open questions of biology and solving the origin of the universe and other puzzles as well as allowing for a revolution in sensing, time keeping and communications.

"By taking advantage of simple well developed technology we have be able to create a remarkably robust and simple method, which is expected to provide a stepping stone for this technology to be integrated into a breadth of different quantum technologies spanning from quantum computers to highly sensitive quantum sensors," said Professor Hensinger.

Freezing atoms puts them into the lowest possible energy and is a step towards harnessing the strange effects of quantum physics, which allow objects to exist in different states at the same time. "Besides finding an easy way to create atoms with zero-point energy, we have also managed to put the atom into a highly counter intuitive state: where it is both moving and not moving at the same time," said Professor Hensinger.

Source: http://www.sussex.ac.uk/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.