Posted in | News | Quantum Computing

Scientists Identify Promising Quantum Bits in 2D Materials

Quantum computers or quantum sensors consist of materials that are completely different to their classic predecessors.

These materials are faced with the challenge of combining contradicting properties that quantum technologies entail, as for example good accessibility of quantum bits with maximum shielding from environmental influences. In this regard, so-called two-dimensional materials, which only consist of a single layer of atoms, are particularly promising.

Researchers at the new Center for Applied Quantum Technologies and the 3rd Institute of Physics at the University of Stuttgart have now succeeded in identifying promising quantum bits in these materials. They were able to show that the quantum bits can be generated, read out and coherently controlled in a very robust manner. "There certainly is still a long way to go before these quantum bits can be used in quantum technology," says the head of the study and director of the 3rd Institute of Physics at the University of Stuttgart, Prof. Jörg Wrachtrup. "However, the properties found by the scientists are so convincing that they can trigger a new boost in quantum technologies."

Source: https://www.uni-stuttgart.de/en/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.